Adenosine Triphosphate Stimulates Aquifex aeolicus MutL Endonuclease Activity
نویسندگان
چکیده
BACKGROUND Human PMS2 (hPMS2) homologues act to nick 5' and 3' to misincorporated nucleotides during mismatch repair in organisms that lack MutH. Mn(++) was previously found to stimulate the endonuclease activity of these homologues. ATP was required for the nicking activity of hPMS2 and yPMS1, but was reported to inhibit bacterial MutL proteins from Thermus thermophilus and Aquifex aeolicus that displayed homology to hPMS2. Mutational analysis has identified the DQHA(X)(2)E(X)(4)E motif present in the C-terminus of PMS2 homologues as important for endonuclease activity. METHODOLOGIES/PRINCIPAL FINDINGS We examined the effect ATP had on the Mn(++) induced nicking of supercoiled pBR322 by full-length and mutant A. aeolicus MutL (Aae MutL) proteins. Assays were single time point, enzyme titration experiments or reaction time courses. The maximum velocity for MutL nicking was determined to be 1.6+/-0.08x10(-5) s(-1) and 4.2+/-0.3x10(-5) s(-1) in the absence and presence of ATP, respectively. AMPPNP stimulated the nicking activity to a similar extent as ATP. A truncated Aae MutL protein composed of only the C-terminal 123 amino acid residues was found to nick supercoiled DNA. Furthermore, mutations in the conserved C-terminal DQHA(X)(2)E(X)(4)E and CPHGRP motifs were shown to abolish Aae MutL endonuclease activity. CONCLUSIONS ATP stimulated the Mn(++) induced endonuclease activity of Aae MutL. Experiments utilizing AMPPNP implied that the stimulation did not require ATP hydrolysis. A mutation in the DQHA(X)(2)E(X)(4)E motif of Aae MutL further supported the role of this region in endonclease activity. For the first time, to our knowledge, we demonstrate that changing the histidine residue in the conserved CPHGRP motif abolishes endonucleolytic activity of a hPMS2 homologue. Finally, the C-terminal 123 amino acid residues of Aae MutL were sufficient to display Mn(++) induced nicking activity.
منابع مشابه
NMR Characterization of the Interaction of the Endonuclease Domain of MutL with Divalent Metal Ions and ATP
MutL is a multi-domain protein comprising an N-terminal ATPase domain (NTD) and C-terminal dimerization domain (CTD), connected with flexible linker regions, that plays a key role in DNA mismatch repair. To expand understanding of the regulation mechanism underlying MutL endonuclease activity, our NMR-based study investigated interactions between the CTD of MutL, derived from the hyperthermophi...
متن کاملStructural Features and Functional Dependency on β-Clamp Define Distinct Subfamilies of Bacterial Mismatch Repair Endonuclease MutL.
In early reactions of DNA mismatch repair, MutS recognizes mismatched bases and activates MutL endonuclease to incise the error-containing strand of the duplex. DNA sliding clamp is responsible for directing the MutL-dependent nicking to the newly synthesized/error-containing strand. In Bacillus subtilis MutL, the β-clamp-interacting motif (β motif) of the C-terminal domain (CTD) is essential f...
متن کاملAquifex aeolicus PilT, homologue of a surface motility protein, is a thermostable oligomeric NTPase.
Bacterial surface motility works by retraction of surface-attached type IV pili. This retraction requires the PilT protein, a member of a large family of putative NTPases from type II and IV secretion systems. In this study, the PilT homologue from the thermophilic eubacterium Aquifex aeolicus was cloned, overexpressed, and purified. A. aeolicus PilT was shown to be a thermostable ATPase with a...
متن کاملAnalysis of the Interaction Interfaces of the N-Terminal Domain from Pseudomonas aeruginosa MutL
Mismatch Repair System corrects mutations arising from DNA replication that escape from DNA polymerase proofreading activity. This system consists of three main proteins, MutS-L-H, responsible for lesion recognition and repair. MutL is a member of GHKL ATPase family and its ATPase cycle has been proposed to modulate MutL activity during the repair process. Pseudomonas aeruginosa MutL (PaMutL) c...
متن کاملExpression, refolding and crystallization of Aquifex aeolicus elongation factor P.
Elongation factor P is a universally conserved protein stimulating peptidyltransferase activity during protein synthesis. The factor is sensitive to classical inhibitors of the ribosomal peptidyltransferase activity and is possibly involved in alignment of the substrate tRNAs in the catalytic centre of 70S ribosomes. Elongation factor P from the thermophilic Aquifex aeolicus was overexpressed a...
متن کامل